Files
system-monitor/backend/api/anomaly/trend.get.ts
2025-12-28 16:18:02 +09:00

155 lines
4.7 KiB
TypeScript

import { query } from '../../utils/db'
export default defineEventHandler(async (event) => {
const SLOPE_THRESHOLD = 0.5
const MIN_SAMPLES = 10
const WINDOW_MINUTES = 30
const servers = await query<any>(`
SELECT target_id, server_name
FROM server_targets
WHERE is_active = 1
ORDER BY server_name
`)
const anomalies: any[] = []
const serverResults: any[] = []
for (const server of servers) {
const snapshots = await query<any>(`
SELECT cpu_percent, memory_percent, collected_at,
EXTRACT(EPOCH FROM (NOW() - collected_at::timestamp)) / 60 as minutes_ago
FROM server_snapshots
WHERE target_id = $1 AND is_online = 1
AND collected_at::timestamp >= NOW() - INTERVAL '${WINDOW_MINUTES} minutes'
ORDER BY collected_at ASC
`, [server.target_id])
if (snapshots.length < MIN_SAMPLES) {
serverResults.push({
target_id: server.target_id,
server_name: server.server_name,
cpu_current: snapshots.length > 0 ? snapshots[snapshots.length - 1].cpu_percent : null,
mem_current: snapshots.length > 0 ? snapshots[snapshots.length - 1].memory_percent : null,
cpu_slope: null,
mem_slope: null,
cpu_trend: null,
mem_trend: null,
sample_count: snapshots.length,
status: 'insufficient'
})
continue
}
const n = snapshots.length
const current = snapshots[n - 1]
const currCpu = Number(current.cpu_percent) || 0
const currMem = Number(current.memory_percent) || 0
const cpuPoints = snapshots.map((s: any, i: number) => ({ x: i, y: Number(s.cpu_percent) || 0 }))
const memPoints = snapshots.map((s: any, i: number) => ({ x: i, y: Number(s.memory_percent) || 0 }))
function linearRegression(points: { x: number, y: number }[]): { slope: number, intercept: number, r2: number } {
const n = points.length
let sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0
for (const p of points) {
sumX += p.x
sumY += p.y
sumXY += p.x * p.y
sumX2 += p.x * p.x
}
const slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX)
const intercept = (sumY - slope * sumX) / n
const yMean = sumY / n
let ssTotal = 0, ssResidual = 0
for (const p of points) {
const yPred = slope * p.x + intercept
ssTotal += Math.pow(p.y - yMean, 2)
ssResidual += Math.pow(p.y - yPred, 2)
}
const r2 = ssTotal > 0 ? 1 - (ssResidual / ssTotal) : 0
return { slope, intercept, r2 }
}
const cpuReg = linearRegression(cpuPoints)
const memReg = linearRegression(memPoints)
const cpuSlopePerMin = (cpuReg.slope * n) / WINDOW_MINUTES
const memSlopePerMin = (memReg.slope * n) / WINDOW_MINUTES
function getTrend(slope: number, r2: number): string {
if (r2 < 0.3) return 'unstable'
if (slope >= SLOPE_THRESHOLD) return 'rising'
if (slope <= -SLOPE_THRESHOLD) return 'falling'
return 'stable'
}
const cpuTrend = getTrend(cpuSlopePerMin, cpuReg.r2)
const memTrend = getTrend(memSlopePerMin, memReg.r2)
let status = 'normal'
if (cpuTrend === 'rising' || memTrend === 'rising') status = 'warning'
if (cpuSlopePerMin >= 1.0 || memSlopePerMin >= 1.0) status = 'danger'
serverResults.push({
target_id: server.target_id,
server_name: server.server_name,
cpu_current: currCpu,
mem_current: currMem,
cpu_slope: cpuSlopePerMin,
mem_slope: memSlopePerMin,
cpu_trend: cpuTrend,
mem_trend: memTrend,
cpu_r2: cpuReg.r2,
mem_r2: memReg.r2,
sample_count: snapshots.length,
status
})
if (cpuTrend === 'rising' && cpuReg.r2 >= 0.3) {
const level = cpuSlopePerMin >= 1.0 ? 'danger' : 'warning'
anomalies.push({
target_id: server.target_id,
server_name: server.server_name,
metric: 'CPU',
current: currCpu,
slope: cpuSlopePerMin,
r2: cpuReg.r2,
trend: cpuTrend,
level
})
}
if (memTrend === 'rising' && memReg.r2 >= 0.3) {
const level = memSlopePerMin >= 1.0 ? 'danger' : 'warning'
anomalies.push({
target_id: server.target_id,
server_name: server.server_name,
metric: 'Memory',
current: currMem,
slope: memSlopePerMin,
r2: memReg.r2,
trend: memTrend,
level
})
}
}
anomalies.sort((a, b) => b.slope - a.slope)
return {
anomalies,
servers: serverResults,
config: {
slope_threshold: SLOPE_THRESHOLD,
window_minutes: WINDOW_MINUTES,
min_samples: MIN_SAMPLES
},
timestamp: new Date().toISOString()
}
})