Files
system-monitor/backend/api/anomaly/trend.get.ts
2025-12-28 12:03:48 +09:00

193 lines
6.3 KiB
TypeScript

import { getDb } from '../../utils/db'
export default defineEventHandler(async (event) => {
const db = getDb()
const SLOPE_THRESHOLD = 0.5 // 분당 0.5% 이상 증가/감소 시 이상
const MIN_SAMPLES = 10 // 최소 10개 샘플 필요
const WINDOW_MINUTES = 30 // 30분 윈도우
const servers = db.prepare(`
SELECT target_id, server_name
FROM server_targets
WHERE is_active = 1
ORDER BY server_name
`).all() as any[]
const anomalies: any[] = []
const serverResults: any[] = []
// 로그 저장용
const insertLog = db.prepare(`
INSERT INTO anomaly_logs (target_id, server_name, detect_type, metric, level, current_value, threshold_value, message)
VALUES (?, ?, 'trend', ?, ?, ?, ?, ?)
`)
const recentLogExists = db.prepare(`
SELECT 1 FROM anomaly_logs
WHERE target_id = ? AND detect_type = 'trend' AND metric = ?
AND detected_at > datetime('now', '-1 minute', 'localtime')
LIMIT 1
`)
for (const server of servers) {
// 최근 30분 데이터 조회
const snapshots = db.prepare(`
SELECT cpu_percent, memory_percent, collected_at,
(julianday('now', 'localtime') - julianday(collected_at)) * 24 * 60 as minutes_ago
FROM server_snapshots
WHERE target_id = ? AND is_online = 1
AND collected_at >= datetime('now', '-${WINDOW_MINUTES} minutes', 'localtime')
ORDER BY collected_at ASC
`).all(server.target_id) as any[]
if (snapshots.length < MIN_SAMPLES) {
serverResults.push({
target_id: server.target_id,
server_name: server.server_name,
cpu_current: snapshots.length > 0 ? snapshots[snapshots.length - 1].cpu_percent : null,
mem_current: snapshots.length > 0 ? snapshots[snapshots.length - 1].memory_percent : null,
cpu_slope: null,
mem_slope: null,
cpu_trend: null,
mem_trend: null,
sample_count: snapshots.length,
status: 'insufficient'
})
continue
}
// 선형 회귀 계산 (최소제곱법)
// y = ax + b, a = slope (기울기)
const n = snapshots.length
const current = snapshots[n - 1]
const currCpu = current.cpu_percent ?? 0
const currMem = current.memory_percent ?? 0
// x = 시간 (분), y = 값
const cpuPoints = snapshots.map((s, i) => ({ x: i, y: s.cpu_percent ?? 0 }))
const memPoints = snapshots.map((s, i) => ({ x: i, y: s.memory_percent ?? 0 }))
function linearRegression(points: { x: number, y: number }[]): { slope: number, intercept: number, r2: number } {
const n = points.length
let sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0, sumY2 = 0
for (const p of points) {
sumX += p.x
sumY += p.y
sumXY += p.x * p.y
sumX2 += p.x * p.x
sumY2 += p.y * p.y
}
const slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX)
const intercept = (sumY - slope * sumX) / n
// R² (결정계수) 계산
const yMean = sumY / n
let ssTotal = 0, ssResidual = 0
for (const p of points) {
const yPred = slope * p.x + intercept
ssTotal += Math.pow(p.y - yMean, 2)
ssResidual += Math.pow(p.y - yPred, 2)
}
const r2 = ssTotal > 0 ? 1 - (ssResidual / ssTotal) : 0
return { slope, intercept, r2 }
}
const cpuReg = linearRegression(cpuPoints)
const memReg = linearRegression(memPoints)
// 분당 기울기로 환산 (수집 간격 고려)
const totalMinutes = WINDOW_MINUTES
const cpuSlopePerMin = (cpuReg.slope * n) / totalMinutes
const memSlopePerMin = (memReg.slope * n) / totalMinutes
// 추세 판단
function getTrend(slope: number, r2: number): string {
if (r2 < 0.3) return 'unstable' // 추세가 불안정
if (slope >= SLOPE_THRESHOLD) return 'rising'
if (slope <= -SLOPE_THRESHOLD) return 'falling'
return 'stable'
}
const cpuTrend = getTrend(cpuSlopePerMin, cpuReg.r2)
const memTrend = getTrend(memSlopePerMin, memReg.r2)
// 상태 결정
let status = 'normal'
if (cpuTrend === 'rising' || memTrend === 'rising') status = 'warning'
if (cpuSlopePerMin >= 1.0 || memSlopePerMin >= 1.0) status = 'danger' // 분당 1% 이상
serverResults.push({
target_id: server.target_id,
server_name: server.server_name,
cpu_current: currCpu,
mem_current: currMem,
cpu_slope: cpuSlopePerMin,
mem_slope: memSlopePerMin,
cpu_trend: cpuTrend,
mem_trend: memTrend,
cpu_r2: cpuReg.r2,
mem_r2: memReg.r2,
sample_count: snapshots.length,
status
})
// CPU 이상감지 + 로그 저장
if (cpuTrend === 'rising' && cpuReg.r2 >= 0.3) {
const level = cpuSlopePerMin >= 1.0 ? 'danger' : 'warning'
const message = `CPU 지속 상승 중 (분당 +${cpuSlopePerMin.toFixed(2)}%, R²=${cpuReg.r2.toFixed(2)})`
anomalies.push({
target_id: server.target_id,
server_name: server.server_name,
metric: 'CPU',
current: currCpu,
slope: cpuSlopePerMin,
r2: cpuReg.r2,
trend: cpuTrend,
level
})
if (!recentLogExists.get(server.target_id, 'CPU')) {
insertLog.run(server.target_id, server.server_name, 'CPU', level, currCpu, cpuSlopePerMin, message)
}
}
// Memory 이상감지 + 로그 저장
if (memTrend === 'rising' && memReg.r2 >= 0.3) {
const level = memSlopePerMin >= 1.0 ? 'danger' : 'warning'
const message = `Memory 지속 상승 중 (분당 +${memSlopePerMin.toFixed(2)}%, R²=${memReg.r2.toFixed(2)})`
anomalies.push({
target_id: server.target_id,
server_name: server.server_name,
metric: 'Memory',
current: currMem,
slope: memSlopePerMin,
r2: memReg.r2,
trend: memTrend,
level
})
if (!recentLogExists.get(server.target_id, 'Memory')) {
insertLog.run(server.target_id, server.server_name, 'Memory', level, currMem, memSlopePerMin, message)
}
}
}
anomalies.sort((a, b) => b.slope - a.slope)
return {
anomalies,
servers: serverResults,
config: {
slope_threshold: SLOPE_THRESHOLD,
window_minutes: WINDOW_MINUTES,
min_samples: MIN_SAMPLES
},
timestamp: new Date().toISOString()
}
})